A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence

Author:

Abstract

The coherent motions identified in passively marked turbulent boundary-layer experiments are reviewed. Data obtained in our laboratory using simultaneous hot-wire anemometry and flow visualization are analysed to provide measures of the percent contribution of the coherent motions to the total Reynolds stress. A coherent structure model is then developed. In the outer region the model incorporates the large-scale motions, the typical eddies and their interactions. In the wall region the model is characterized by the long streaks, their associated hairpin vortices, and the pockets with their associated pocket and hairpin vortices. The motions in both regions have unique phase relations which play an important role in their evolution and the resulting intensity of their interactions. In addition, the inner-outer region interactions are seen to be strong because typical eddies, microscale motions which can directly initiate the bursting process near a wall, are convected towards the wall by the response of the high speed outer region fluid to the presence of the large-scale motions. This interaction establishes a phasing between the inner and outer regions. The length and velocity scales of the typical eddy are used to remove the Reynolds number dependence of the stream wise fluctuations and the Reynolds stress in the fully turbulent portion of turbulent boundary layers over a wide range of Reynolds numbers

Publisher

The Royal Society

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3