Grain boundary segregation and intergranular fracture in molybdenum

Author:

Abstract

The refractory group VIA metals generally exhibit intergranular brittleness when they are in the recrystallized condition. This causes severe problems in their fabrication and places major limitations on their practical application. The phenomenon, generally referred to as recrystallization embrittlement, results in large increases in the ductile-to-brittle transition temperature and a change in fracture mode in the lower shelf regime from cleavage to intergranular with a significant decrease in ductility. The embrittlement is widely considered to be associated with interstitial impurities but there have been few systematic studies to elucidate their effects. The present paper reports results from a systematic study of segregation and intergranular embrittlement in binary molybdenum-oxygen and ternary molybdenum-oxygen-carbon alloys. The experiments were carried out on ‘bamboo’ specimens containing a series of identical single grain boundaries traversing their cross-sections. Measurements have been made of the activation energy for oxygen segregation to grain boundaries in the binary molybdenum-oxygen alloys. The influence of carbon additions on the level of oxygen segregation has also been determined. In addition, the influence of oxygen segregation on the energy to fracture has been studied and this has involved quantitative measurements of the work of fracture and the contribution made by plastic deformation. Results from metallographic studies are also presented, showing the effects of segregation on fracture surface topography and dislocation structures immediately adjacent to the fracture surfaces. In discussing the results we consider the thermodynamics of oxygen segregation to grain boundaries and the role played by carbon in inhibiting segregation. It is proposed that carbon either increases the effective solubility of oxygen in molybdenum or acts as a trap for oxygen atoms. In either case the effect is to reduce the driving force for segregation. We also consider the influence of segregation on the work of fracture and show that the reduction in oxygen segregation resulting from the addition of carbon produces small increases in fracture energy. This increases the local stress to propagate a crack sufficiently to promote plastic deformation which blunts the crack tip. The consequent change in geometry reduces the stress concentration at the crack tip, thereby resulting in a large increase in the applied fracture stress and the work to fracture.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3