Ill-posed problems in early vision: from computational theory to analogue networks

Author:

Abstract

We outline a theoretical framework that leads from the computational nature of early vision to algorithms for solving them and finally to a specific class of analogue and parallel hardware for the efficient solution of these algorithms. The common computational structure of many early vision problems is that they are mathematically ill-posed in the sense of Hadamard. Regularization analysis can be used to solve them in terms of variational principles of a specific type that enforce constraints derived from a physical analysis of the problem. Studies of human perception may reveal whether principles of a similar type are exploited by biological vision. We also show that the corresponding variational principles can be implemented in a natural way by analogue networks. Specific electrical and chemical networks for localizing edges and computing visual motion are derived. We suggest that local circuits of neurons may exploit this unconventional model of computation.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Value units make the right connections;Behavioral and Brain Sciences;1986-03

2. Connectionist computing and neural machinery: Examining the test of “timing”;Behavioral and Brain Sciences;1986-03

3. What does the cortex do?;Behavioral and Brain Sciences;1986-03

4. Computational neuroscience;Behavioral and Brain Sciences;1986-03

5. Old dogmas and new axioms in brain theory;Behavioral and Brain Sciences;1986-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3