Simulation of electrostatic systems in periodic boundary conditions. III. Further theory and applications

Author:

Abstract

This paper makes some developments and clarifications of the theory for the application of periodic boundary conditions to the numerical simulation of the statistical mechanics of a cubic sample of dipolar particles. The reaction-field effect is treated rigorously. The anisotropies inherent in the periodic boundary condition Hamiltonian are allowed for in the derivation of a new fluctuation formula. A perturbation theory to account for anisotropic long-ranged terms is described, giving two di­-electric constant estimates from one simulation. These new results are illustrated with Monte Carlo simulations of the Stockmayer system at reduced density 0.8, reduced square dipole moment 2.0 and scaled temperature 1.35, giving a dielectric constant estimate of 25 ± 2 from all the data, and showing that the perturbation theories are very accurate. It appears possible to claim that periodic boundary conditions should be used with infinite external dielectric constant in almost all circumstances, because they then give a chain of configurations that provide compar­atively very stable estimates of dielectric constant.

Publisher

The Royal Society

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3