Abstract
The initiation of condensed-phase explosives is often caused by hot spots; that is, localized regions of high temperature created by a variety of physical mechanisms, particularly in solid explosives. Once the hot spots are created, further temperature change is governed by (i) self-heating due to chemical reaction, (ii) heat loss by conduction and radiation, and (iii) adiabatic effects due to pressure and specific volume variation. The last effect includes both self-induced pressure change due to thermal expansion against the surroundings, and externally generated pressure change when initiation is attempted by mechanical impact. This paper presents a thermodynamic description of exothermic reaction under conditions of variable pressure and volume. The reaction rate is assumed to be a function of temperature only. The effect of variable pressure enters through its influence on temperature. It is demonstrated that the effects of self-induced pressure change are small. In the case of externally generated pressure change, explosion times can be affected drastically. These results are discussed in terms of initiation by shock waves of finite duration.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献