The Görtler vortex instability mechanism in three-dimensional boundary layers

Author:

Abstract

It is well known that the two-dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Görtler number. However, in most situations of practical interest the basic flow is three-dimensional and previous theoretical investigations do not apply. In this paper the linear stability of the flow over an infinitely long swept wall of vari­able curvature is considered. If there is no pressure gradient in the boundary layer it is shown that the instability problem can always be related to an equivalent two-dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two- and three-dimensional problems emerge. In particular, it is shown that when the relative size of the crossflow and chordwise flow is O ( Re –½ ),where Re is the Reynolds number of the flow, the most unstable mode is time-dependent. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow. In this régime the eigenfunctions associated with the instability become essentially 'centre modes’ of the Orr–Sommerfeld equation destabilized by centrifugal effects. The critical Görtler number for such modes can be predicted by a large wavenumber asymptotic analysis; the results suggest that for order unity values of the ratio of the crossflow and chordwise velocity fields, the Görtler instability mechanism is almost certainly not operational.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3