The fourth-order evolution equation for deep-water gravity-capillary waves

Author:

Abstract

The stability of a train of nonlinear gravity-capillary waves on the surface of an ideal fluid of infinite depth is considered. An evolution equation is derived for the wave envelope, which is correct to fourth order in the wave steepness. The derivation is made from the Zakharov equation under the assumption of a narrow band of waves, and including the full form of the interaction coefficient for gravity-capillary waves. It is assumed that conditions are away from subharmonic resonant wavelengths. Just as was found by K. B. Dysthe ( Proc. R. Soc. Lond . A 369 (1979)) for pure gravity waves, the main difference from the third-order evolution equation is, as far as stability is concerned, the introduction of a mean flow response. There is a band of waves that remains stable to fourth order. In general the mean flow effects for pure capillary waves are of opposite sign to those of pure gravity waves. The second-order corrections to first-order stability properties are shown to depend on the interaction between the mean flow and the envelope frequency-dispersion term in the governing equation. The results are shown to be in agreement with some recent computations of the full problem for sufficiently small values of the wave steepness.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the hyperbolic nonlinear Schrödinger equations;Advances in Continuous and Discrete Models;2024-05-27

2. Linear-shear-current modified nonlinear Schrödinger equation for gravity-capillary waves on deep water;Meccanica;2024-05

3. Weakly nonlinear modulation of interfacial gravity-capillary waves;Ocean Dynamics;2024-01-03

4. Stability Analysis from Fourth-Order Nonlinear Multiphase Deep Water Wavetrains;Lecture Notes in Mechanical Engineering;2024

5. The theory of fifth-order Stokes waves in a linear shear current;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3