The evaporation and combustion of levitated arrays of two, three and five droplets at a hot surface

Author:

Abstract

The interactions between droplets in several geometrical arrays in Leidenfrost evaporation and combustion on a hot surface were studied. Comparisons between evaporation and burning times of isolated droplets, two- and three-droplet linear arrays, and a five-droplet array (a centre droplet surrounded by four droplets) were made. The liquids studied were water, n -heptane, and n -hexadecane at 0.101 MPa and at surface temperatures above their respective Leidenfrost values. A range of centre distance to initial droplet diameter ratios, L / d 0 , were studied (2 < L / d 0 < ∞). The evaporation or burning rates of droplets in binary arrays were found to be identical to those of isolated droplets ( L / d 0 → ∞). The flames around each droplet, however, merged as the droplets were brought closer together. In three- and five-droplet arrays more significant interactions were observed, with the edge droplets in the arrays burning faster than the centre droplets. The results are explained on the basis of flame-height measurements for the arrays. In pure evaporation, though, the droplets evaporated without regard for their neighbours.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Independent microscale sensing of phase interface and surface temperature during droplet evaporation;Applied Thermal Engineering;2024-01

2. Laser-Driven Calorimetry of Single-Component Liquid Hydrocarbons;Energy & Fuels;2017-06-29

3. STUDIES ON COMBUSTION OF DOUBLE STREAMS OF METHANOL/DODECANOL FUEL DROPLETS NEXT TO A COOLING WALL;Combustion Science and Technology;2007-03

4. Leidenfrost Evaporation of Liquid Nitrogen Droplets;Journal of Heat Transfer;1994-11-01

5. Droplet combustion near a cold surface;Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences;1990-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3