Low-dimensional lattices V. Integral coordinates for integral lattices

Author:

Abstract

We say that an n -dimensional (classically) integral lattice is s -integrable, for an integer s , if it can be described by vectors s ( x 1 ,..., x k ), with all x i ∊ Z, in a euclidean space of dimension kn . Equivalently, is s -integrable if and only if any quadratic form f ( x ) corresponding to can be written as s -1 times a sum of k squares of linear forms with integral coefficients, or again, if and only if the dual lattice * contains a eutactic star of scale s . This paper gives many techniques for s -integrating low-dimensional lattices (such as E s and the Leech lattice). A particular result is that any one-dimensional lattice can be 1-integrated with k = 4: this is Lagrange’s four-squares theorem. Let ϕ ( s ) be the smallest dimension n in which there is an integral lattice that is not s -integrable. In 1937 Ko and Mordell showed that ϕ (1) = 6. We prove that ϕ (2) = 12, ϕ (3) = 14, 21 ≼ ϕ (4) ≼ 25, 16 ≼ ϕ (5) ≼ 22, ϕ ( s ) ≼ 4 s + 2 ( s odd), ϕ ( s ) ≼ 2 π e s (1 + o (1)) ( s even) and ϕ ( s ) ≽ 2In In s /ln In In s (1 + o (1)).

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference40 articles.

1. ^ 13 can be 3-integrated using

2. n+ 6seems quite weak.

3. Uber die Zerlegung quadratischer Formen in Quadrate. reine angew;Braun H.;Math.,1938

4. New trellis codes based on lattices and cosets

5. Cassels J. W. S. 1978 Rational quadratic forms. New York: Academic Press.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The adjoint of the nullwert map on Jacobi forms of lattice index;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2024-07-25

2. Modular forms with poles on hyperplane arrangements;Algebraic Geometry;2024-07-01

3. On Kitaoka's conjecture and lifting problem for universal quadratic forms;Bulletin of the London Mathematical Society;2022-12-07

4. Borcherds products of half-integral weight;Journal of Number Theory;2021-11

5. Recent Progress on Graphs with Fixed Smallest Adjacency Eigenvalue: A Survey;Graphs and Combinatorics;2021-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3