The role of three-dimensional shapes in the break-up of charged drops

Author:

Abstract

A nonlinear analysis of the non-axisymmetric shapes and oscillations of charged, conducting drops is carried out near the Rayleigh limit that gives the critical amount of charge for which the spherical equilibrium form loses stability. The Rayleigh limit is shown to correspond to a fivefold singular point with only axisymmetric spheroidal shapes bifurcating from the family of spheres. The oblate spheroids that exist for greater amounts of charge are unstable to non-axisymmetric disturbances, which control the evolution of drop break-up. The bifurcating prolate spheroids that exist for values of charge less than the Rayleigh limit are only unstable to axisymmetric perturbations that elongate the drop along its symmetry axis; hence, the initial stage of the droplet break-up is through a sequence of lengthening prolate shapes. An external uniform electric field or a rigid-body rotation of the drop breaks the symmetry of the spherical base shape and is an imperfection to the Rayleigh limit. Addition of an electric field leads to slightly prolate shapes that end at a limiting value of charge. Rigid rotation leads to slightly oblate forms that lose stability to triaxial shapes. For values of charge just less than the Rayleigh limit, the amplitude equations that are derived from a multiple timescale analysis are equivalent to the dynamical equations of the Hénon‒Heiles Hamiltonian. The remarkable and complicated properties of the bounded solutions to this set of equations are well known and reviewed briefly here.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference31 articles.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3