Cherenkov radiation in spatially dispersive media

Author:

Abstract

The Cherenkov fields of a proton, and a neutron, moving with a relativistic velocity in a spatially dispersive medium are studied in the rest frame of the particle. The model of the medium used is typical of the behaviour of a dielectric near an exciton transition, and includes as a special case a screening medium like an isotropic plasma. The Fourier integral for the field of a proton is shown to split up into three integrals, each of which is identical to that in an ordinary medium but for a weight factor dependent on the frequency of the Fourier component. Each of these integrals is associated with one mode of Cherenkov emission, with its own threshold. The motion of the charge gives rise to three coaxial diffuse circular field cones with an azimuthally symmetric intensity distribution. The output of photons in each mode is evaluated. The field and output of a relativistic neutron are also evaluated for different orientations of the magnetic moment of the neutron relative to the direction of motion. It is shown that there are only two cones in this case, consistent with the fact that magnetic sources cannot excite the longitudinal plasma mode in a medium which is spatially dispersive only in its electrical properties.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference26 articles.

1. Electromagnetic fields in spatially dispersive media

2. Agranovich V. M. & Ginzburg V. L. 1966 Spatial dispersion in crystal optics and the theory of excitons. New Y ork: Interscience.

3. Čerenkov Radiation of Neutral Particles with a Magnetic Moment

4. Bohr N. 1948 Fys. Medd. danske Vidensk. Selsk 18.

5. Burstein E. & de M artini F. 1974 (ed.) Polaritons. Oxford: Pergamon.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relativistic energy loss in a dispersive medium;Physical Review A;2002-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3