A refinement of the Radon transform and its inverse

Author:

Abstract

The Radon transform of a function is defined as an integration over planes whose normals vary over the entire unit sphere. The space is actually covered twice because the distance of the plane from the origin is allowed to be positive or negative. The usual inverse transform requires knowledge of the transform evaluated over the entire sphere. However, we shall show that only the transform over a hemisphere, which can consist of disconnected parts, is required to reconstruct the original function . Thus the redundancy of the double-covering is removed and only one-half of the transform is needed to recover the original function. In essence we have introduced optical coordinates. We then consider function f(x) obtained by applying the inverse Radon transform to an arbitrary function which has the same arguments as the Radon transform but is not, in general, a Radon transform. On applying the Radon transform to f(x) we find that only part of the arbitrary function, to which the inverse was applied, is reproduced. Thus the Radon transform has a left inverse but not a right inverse. However, by restricting the range of variables in the transform space, a right and left inverse can be obtained which are the same. Finally, we give Parseval’s theorem in terms of the refined Radon transform. Though we modify the older proofs for obtaining the Radon transform and its inverse, for the sake of a self-contained paper we also use new elementary proofs based on relations which we have derived between one­-dimensional and three-dimensional delta functions. We expect that our result will have consequences in tomography and other applications. We ourselves will use the result to obtain the exact fields for the scalar three-dimensional wave equation and Maxwell’s equations from fields in the wave zone, and, conversely, fields in the wave zone from the exact causal fields. In fact, the principal reason for our writing the present paper is to cast the Radon transform and its inverse in a form suitable for these applications. Though we shall prove our result for the three-dimensional case only, the proof for the general case can be inferred from our proof.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. Deans S. R. 1983 TheRadon transform and some of its applications. New York :John Wiley and Sons.

2. Gel'fand I. M. Graev M. I. & Vilenkin N. Ya. 1966 Generalized functions Vol. 5. New York: Academic Press.

3. Helgason S. 1980 The Radon transform.Boston: Birkh^user.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Angular Spectrum Representation of Pulsed Electromagnetic and Optical Beam Fields in Temporally Dispersive Media;Springer Series in Optical Sciences;2019

2. Trkalian fields and Radon transformation;Journal of Mathematical Physics;2010

3. Applications;Springer Series in Optical Sciences;2009

4. Pulsed Electromagnetic and Optical Beam WaveFields in Temporally Dispersive Media;Springer Series in Optical Sciences;2009

5. The spherical curl transform of a linear force-free magnetic field;Journal of Mathematical Physics;1998-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3