Short-scale waves on wind-driven water (‘cat’s paws’)

Author:

Abstract

Wind-generated water waves are considered from the viewpoint of linear stability theory applied to the flow of one fluid, of density ρ 1 and viscosity μ 1 , over another of density ρ 2 and viscosity μ 2 . The velocity profiles in the fluids satisfy the full viscous interface conditions, but otherwise they can be of a general form. The short waves, which are found to arise at increased Reynolds numbers, travel almost at the interface velocity. Most attention is given to the range ( μ 1 / μ 2 ) 2 < ( ρ 1 / ρ 2 ) < 1 of viscosity and density ratios, which includes the wind—water combination. The short waves then are driven predominantly by a combination of the local shear stresses, the viscous forces and the surface tension, whereas gravity and the local curvature and other properties of the general velocity profiles play relatively little part. Although the corresponding main fluid motions near the interface are dominated by viscous dissipation, it so happens that the pressures induced by these viscous motions diminish at the interface and that allows inertial forces to exert a controlling influence there, bringing in the shear stresses above. The predictions agree fairly well with calculations for two-fluid systems at moderate Reynolds numbers, and the wave features seem to tie in with those observed in ‘cat’s paws’ on wind-driven stretches of water. For viscosity and density ratios outside of the range noted above, there is a change in structure that pulls in inertial forces more directly and suppresses the surface-tension effects.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference16 articles.

1. Banner M. L. & Fooks E. H. 1985 Proc. R. Soc. Lond. A 399. 93.

2. Benjamin T. B. 1959

3. Stud. appl;Benney D. J.;Math.,1976

4. On the generation of waves by wind

5. Brotherton-Ratcliffe R. V. 1986 Ph.D. thesis University of London. (Submitted.)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3