The role of solute segregation in grain boundary diffusion

Author:

Abstract

In measurements of grain boundary transport it is the product of the grain boundary enrichment ratio and the grain boundary diffusivity that is usually obtained. This work presents the first study in which these two terms are separated and in which the role of the grain boundary composi­tion in grain boundary diffusion is analysed in detail. This leads to the general prediction that the grain boundary diffusion of solute and solvent will be reduced by strongly segregating solutes if they do not simultaneously enhance the bulk diffusivities. The converse occurs if the solute weakly segregates but strongly enhances the bulk diffusivities. The diffusion measurements are made in iron–tin alloys in the tempera­ture range 563–750 °C by using radiotracers, and the segregation measure­ments, similarly, by Auger electron spectroscopy. The measured bulk diffusivities are similar to those found previously. The grain boundary diffusivities, determined via Suzuoka’s (1964) analysis, for iron and tin in pure iron have pre-exponential coefficients of 225 x 10 -4 and 9.2 x 10 -4 m 2 s -1 and activation energies of 165770 and 166600 J mol -1 respectively. Contrary to the increase in the bulk diffusivity produced by the ‘fast’ diffuser, tin, both grain boundary diffusivities are sharply reduced as the tin content rises. These and earlier results are interpreted through the effect of tin segregation on the grain boundary energy described by the theory of Borisov et al . (1964).

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3