Angle-dependence of ion kinetic energy spectra obtained by using mass spectrometers I. Theoretical consequences of conservation laws for collisions

Author:

Abstract

Collision-induced processes for ion beams in the kilovolt energy range have been studied in mass spectrometers since the inception of the technique (‘Aston bands’). In most such studies to date, the fast collision products bave been collected over a range of angles relative to the initial projectile trajectory, this range being defined by the ion optics of the instrument used. More recently, there has been some interest in controlling and exploiting the collection angle for the fast collision products. The motivation behind such studies may be expressed qualitatively in terms of the more violent collisions favouring higher-energy processes, and also resulting in a larger scattering angle for the projectile ion in the activating collision. Thus, it might be hoped that collection angle could serve as an experimental parameter whose variation controls the energetics of the collision-induced processes actually observed. The present work examines the probable limitations of such an approach, on the basis of classical collision theory. Even without knowledge of an appropriate potential function for the projectile ion-neutral target interaction, it is possible to obtain useful quantitative information concerning such collisions. The extensive work on monatomic projectiles and targets is reviewed, and an attempt made to extend these results to polyatomic species of more interest to the mass spectrometrist. When the collision induced process to be studied is chemical fragmentation, the observed angular distribution is a convolution of two effects of comparable importance, namely the scattering angle-energy deposition relation which is the desired result of the experiment, and the internal energy of the projectile (precursor) ion released as excess translational energy of the fragments. The most recent experimental work on angle-resolved mass spectrometry is critically discussed in the light of these considerations.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference31 articles.

1. A ndersen N . V edder M. R ussek A. & P ollack E . 1978 P hys. B 11 L493-L496.

2. P hys;Pollack E .;Rev. A,1980

3. J . phys;Cooks R .;Chem.,1975

4. A ston F. W . 1933 M ass spectra and isotopes 2nd edn. L ondon: E . A rnold.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3