Weighted Sobolev spaces and exterior problems for the Helmholtz equation

Author:

Abstract

Weighted Sobolev spaces are used to settle questions of existence and uniqueness of solutions to exterior problems for the Helmholtz equation. Furthermore, it is shown that this approach can cater for inhomogeneous terms in the problem that are only required to vanish asymptotically at infinity. In contrast to the Rellich–Sommerfeld radiation condition which, in a Hilbert space setting, requires that all radiating solutions of the Helmholtz equation should satisfy a condition of the form ( / r i k ) u L 2 ( Ω ) , r = | x | Ω R n , it is shown here that radiating solutions satisfy a condition of the form ( 1 + r ) 1 2 ( ln ( e + r ) ) 1 2 δ u L 2 ( Ω ) , 0 < δ < 1 2 , and, moreover, such solutions satisfy the classical Sommerfeld condition u = O ( r 1 2 ( n 1 ) ) , r . Furthermore, the approach avoids many of the difficulties usually associated with applications of the Poincaré inequality and the Sobolev embedding theorems.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference19 articles.

1. Agmon S. & Hormander L. 1976

2. Alber H. D. 1979 Math.

3. LXI. On Sommerfeld's “radiation condition.”

4. SIAM Jl math;Ching C. H.;Anal.,1974

5. Z. 16 7 213-226.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Density results for Sobolev, Besov and Triebel–Lizorkin spaces on rough sets;Journal of Functional Analysis;2021-08

2. Well-Posed PDE and Integral Equation Formulations for Scattering by Fractal Screens;SIAM Journal on Mathematical Analysis;2018-01

3. Two-Parameter Topological Expansion of Helmholtz Problems with Inhomogeneity;Mathematical Analysis of Continuum Mechanics and Industrial Applications;2016-11-19

4. Boundary Integral Equations;Applied Mathematical Sciences;2008

5. Electromagnetic scattering by an inhomogeneous conducting or dielectric layer on a perfectly conducting plate;Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences;1998-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3