The development of wear-protective oxides and their influence on sliding friction

Author:

Abstract

The friction behaviour of iron and Fe-Cr alloys in unidirectional and reciprocating sliding motions at 293 K has been examined in oxygen of controlled partial pressure. During sliding, a progressive decrease in coefficient of friction accompanies the development of compacted oxide films on the metal surfaces, eventually resulting in a steady value of about 0.6 when almost complete oxide coverage is attained. This is achieved more rapidly at higher oxygen partial pressures. A model to account for the experimental observations is proposed, based on the growth of oxide on the clean metal surfaces and metal wear particles between each wear traversal and the removal of that oxide during the subsequent traversal. The oxidized debris is fragmented further and compacted on to the metal surfaces to form a layer of nominally constant thickness, the area of which increases progressively with the number of sliding traversals. The model relates the coefficient of friction to the area of compacted oxide in terms of several interfacial metal, oxide and metal-oxide parameters. The importance of some of these parameters on the frictional behaviour is discussed in light of the experimental observations.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference23 articles.

1. Aronov V. 1977 Wear 41 205-212.

2. Barnes D. J. Wilson J. E. Stott F. H. & Wood G. C. 1977 Wear 45 97-111 161-176.

3. Bisson E. E. Johnson R. L. Swikert M. A. & Godfrey D. 1956 N.A.G.A. Report 1254.

4. Buckley D. H. 1963 N .A.S.A. SP-277 Washington D.C.

5. Buckley D. H. & Johnson R. L. i960 A SLE Trans. 3 93-100.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3