The influence of mean flow on the acoustic properties of a tube bank

Author:

Abstract

The theory of sound propagation through a bank of rigid parallel tubes in the presence of a nominally steady, low Mach number cross flow is discussed. A detailed diffraction analysis is given for the idealized but mathematically tractable case of a bank of strips set at zero angle of attack to the mean flow. Various approximations for the dispersion equation governing the propagation of long waves are derived, including the influence of acoustically induced vortex shedding from the strip trailing edges and of hydrodynamic interactions between neighbouring strips. The sound is attenuated by a transfer of energy to the kinetic energy of the essentially incompressible field of the shed vorticity. It is shown how the principle of conservation of energy and a Kramers-Kronig dispersion relation can be combined to yield an alternative derivation of the dispersion equation. This procedure is applicable to a simplified model of propagation through a bank of rigid tubes of circular cross section, and an approximation to the dispersion equation is obtained in this case. The relevance of these results to bound resonances in tube bank cavities is discussed.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference21 articles.

1. Abramowitz M. & Stegun I. A. 1964 Handbook of mathematical functions. Nat. Bur. Stand appl.Math. Ser. no. 55 Washington D.C.

2. Ashley H. & Landahl M. 1965 Aerodynamics of wings and bodies. Reading Massachusetts: Addison-Wesley.

3. Blevins R. D. 1977 Flow-induced vibration. New York: Van Nostrand Reinhold.

4. Review of sound induced by vortex shedding from cylinders

5. Born M. & Wolf E. 1975 Principles of optics. (5th edn). Oxford: Pergamon.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3