Interphase matter transfer: an experimental study of condensation of mercury

Author:

Abstract

Comparisons between interphase matter-transfer theory and measurements have, in the past, been hindered by uncertainties about the ‘condensation coefficient’. Large experimental errors have often been misinterpreted as indicating low values of the condensation coefficient. Condensation experiments with metals are convenient for the study of interphase matter transfer since, owing to the high thermal conductivity of the liquid, the temperature drop across the condensate film is small and, particularly at low pressures and high condensation rates, the temperature discontinuity at the vapour-liquid interface is of measurable magnitude. Condensation rate, and vapour and condenser surface temperature measurements have been made during film condensation of mercury on a vertical, plane, square (side 40 mm), nickel-plated, copper surface. Thermocouples, accurately located and spaced through the copper condenser block, served to measure, by extrapolation, the temperature of the copper-nickel interface and, from the temperature gradient, the heat flux from which the condensation mass flux was determined. Special care was taken to ensure that the results were not vitiated by the presence in the vapour of noncondensing gases. The observations cover wider ranges of vapour pressure (temperature) and condensation rate (heat flux) than hitherto studied, i.e. 50-4300 Pa (378-493 K) and 0.2- 3.6 kgm ~2 s- 1 (56-1062 kW m -2 ) respectively. The results are considered to have enhanced accuracy. In particular, after the accuracy of calibration and positioning of the thermocouples, and th at of the thermoelectric measurements has been considered, it is estimated that the condenser surface temperature was measured to within around ± 0.1 K. Interface temperature discontinuities up to around 70 K have been observed at low vapour pressure and high condensation rate. The results lend support to recent theoretical studies and indicate that the condensation coefficient exceeds 0.9.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference29 articles.

1. Proc. Third In t;Heat Transfer Conf.,1966

2. A ndreyev P . P a sk a r B. & F edorovich E . 1974 Proc. Conf. Heat- and Mass-Transfer with Phase Transformations (Minsk) p a rt I I pp. 104-116.

3. Vys;Sorokin V. P .;Temp.,1967

4. Proc. Third In t;Heat Transfer Conf.,1966

5. Cipolla J . W . L ang H . & L oyalka S. K . 1974 J . chem Phys. 61 (1) 69-77.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A MOLECULAR DYNAMICS APPROACH TO INTERPHASE MASS TRANSFER BETWEEN LIQUID AND VAPOR;Proceeding of Heat Transfer and Transport Phenomena in Microscale;2023

2. Non-equilibrium condensation;International Journal of Heat and Mass Transfer;2022-12

3. Nonequilibrium statistical thermodynamics of multicomponent interfaces;Proceedings of the National Academy of Sciences;2022-06-08

4. Numerical study of flow and direct contact condensation of entrained vapor in water jet eductor;Experimental and Computational Multiphase Flow;2021-11-12

5. Heat and mass transfer at condensate–vapor interfaces;Physics-Uspekhi;2021-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3