Potential-dependent conductances in lipid membranes containing alamethicin

Author:

Abstract

This article is concerned primarily with the mechanism of the potential-dependent conductance induced in artificial lipid membranes by the cyclic polypeptide antibiotic alamethicin. It has already been shown from studies of the fluctuations that can be detected in very small membrane currents, that alamethicin forms transient pores of some 0.6 nm in diameter and that, for small inorganic ions, these are poorly selective. The origin of these pores, their spatial distribution and interaction are discussed. It is demonstrated that the sensitivity of the membrane conductance to the applied potential arises only to a slight extent from the current-voltage relations for the individual pores, and that the main effect stems from the influence of the potential on the frequency of opening of the pores. From the properties of lipid membranes containing alamethicin in a wide variety of electrolytes, and from other evidence, it is concluded that the polypeptide reacts to the electric field more probably because it has a large dipole moment than because it binds ions. It is proposed that the conducting complex is capable of functioning in either of two orientations, and that it is these two possibilities that give rise to certain differences in the single channel characteristics for the two directions of the field.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3