Homologous chromosome pairing

Author:

Abstract

Commonly accepted precepts are challenged : (1) that homologous chromosome pairing is normally mediated by nuclear envelope attachment sites; (2) that crossover site establishment awaits synaptic completion; and (3) that it is the function of the synaptonemal complex to hold homologues in register so that equal crossing over can occur, and perhaps to provide machinery for the crossover process. Although these views may eventually be shown to be true, it is felt that currently available evidence does not warrant their full acceptance, and that alternatives should be considered. As examples of alternatives the following ideas, with some supporting evidence, are suggested: (1) homologous chromsome pairing (in non-haplont organisms) may be accomplished by chance meeting of homologue segments (followed by establishment of invisible, elastic connectors) at congression for a mitotic metaphase (in many cases perhaps the premeiotic mitosis); (2) crossover sites may be established before, during, or immediately following initiation of synapsis; and (3) the synaptonemal complex may somehow function in the crossover process at the inception of its formation, but its complete deployment throughout each normal bivalent may serve some other role, such as mediation of the binding of sister chromatids apparently required for chiasma maintenance until anaphase I.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meiotic Crossover Patterning;Frontiers in Cell and Developmental Biology;2021-07-22

2. Asynaptic meiosis in fission yeast?;Hereditas;2009-02-12

3. Mechanics of meiosis;Hereditas;2009-02-12

4. Meiotic chromosome behavior in Saccharomyces cerevisiae and (mostly) mammals;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis;2000-06

5. Meiotic Chromosomes: Integrating Structure and Function;Annual Review of Genetics;1999-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3