The multiple factors determining retinotopic order in the growth of optic fibres into the optic tectum

Author:

Abstract

Evidence is presented to support the conclusion that normally functioning optic nerve fibre terminal arborizations are open to continuous modification of their location and that they are capable of large scale gradual movement across the optic tectum in lower vertebrates. The termination of optic fibres at precisely defined tectal locations during normal embryonic development does not appear, in view of this and other evidence, to be due to any restrictions imposed by specializations distinguishing terminal sites themselves. However, there is clear evidence that, on the basis of possibly very simple specializations acquired as part of their embryological origin at particular locations in the retina, growing optic fibres actively and continuously select specific routes to be followed through intervening nervous tissue which eventually lead them to predictable and at least approximately appropriate terminal regions in the tectum. It is proposed that terminals move into and maintain fully retinotopic order as a result of direct interactions between fibres themselves based on features correlated with the retinal proximity of their cells of origin. This may involve further use of specializations due to related embryological origin: correlations in nerve impulse activity among neighbouring retinal ganglion cells may serve to stabilize most favourable terminal combinations. It is argued that fibres are subject to multiple influences which contribute to their orderly growth and that the demands made on the embryological differentiation of nervous tissue can thereby be considerably reduced.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasticity after surgical interventions: Size disparity experiments;Self-Organizing Neural Maps: The Retinotectal Map and Mechanisms of Neural Development;2020

2. Organization of Axons in Their Tracts;Axons and Brain Architecture;2016

3. Optic Nerve Regeneration in Lower Vertebrates and Mammals;Neural Regeneration;2015

4. cAMP regulates axon outgrowth and guidance during optic nerve regeneration in goldfish;Molecular and Cellular Neuroscience;2005-11

5. The human fetal retinal nerve fiber layer and optic nerve head: A DiI and DiA tracing study;Visual Neuroscience;1997-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3