Self-assembly of biological macromolecules

Author:

Abstract

The genetic apparatus of the cell is responsible for the accurate biosynthesis of the primary structure of macromolecules which then spontaneously fold up and, in certain circumstances, aggregate to yield the complex tertiary and quaternary structures of the biologically active molecules. Structures capable of self-assembly in this way range from simple monomers through oligomers to complex multimeric structures that may contain more than one type of polypeptide chain and components other than protein. It is becoming clear that even with the simpler monomeric enzymes there is a kinetically determined pathway for the folding process and that a folded protein must now be regarded as the minimum free energy form of the kinetically accessible conformations. It is argued that the denatured subunits of oligomeric enzymes are likely to fold to something like their final structure before aggregating to give the native quaternary structure and the available evidence would suggest that this is so. The importance of nucleation events and stable intermediates in the self-assembly of more complex structures is clear. Many self-assembling structures contain only identical subunits and symmetry arguments are very successful in accounting for the structures formed. Because proteins are themselves complex molecules and not inelastic geometric objects, the rules of strict symmetry can be bent and quasi-equivalent bonding between subunits permitted. 1'his possibility is frequently employed in biological structures. Conversely, symmetry arguments can offer a reliable means of choosing between alternative models for a given structure. It can be seen that proteins gain stability by growing larger and it is argued in evolutionary terms that aggregation of subunits is the preferred way to increase the size of proteins. The possession of quaternary structure by enzymes allows conferral of other biologically important properties, such as cooperativity between active sites, changes of specificity, substrate channelling and sequential reactions within a multienzyme complex. Comparison is made of the invariant subunit compositions of the simpler oligomeric enzymes with the variation evidently open to, say, the 2-oxoacid dehydrogenase complexes of E. coli . With viruses, on the other hand, the function of the quaternary structure is to package nucleic acid and, as an example, the assembly and breakdown of tobacco mosaic virus is discussed. Attention is drawn to the possible ways in which the principles of self-assembly can be extended to make structures more complicated than those that can be formed by simple aggregation of the component parts.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3