Degradation of Rhodococcus erythropolis SY095 modified with functional magnetic Fe 3 O 4 nanoparticles

Author:

Ma Xiaolei1ORCID,Duan Duomo2,Wang Xunliang1,Cao Junrui1,Qiu Jinquan1,Xie Baolong1

Affiliation:

1. Microbiology and Biotechnology Research Laboratory, The Institute of Seawater Desalination and Multi-Purpose Utilization, Ministry of Natural Resources of the People's Republic of China (MNR), Tianjin 300192, People's Republic of China

2. Tianjin Rehabilitation Center, The PLA Joint Logistic Support Force, Tianjin, 300191, People's Republic of China

Abstract

Alkali-surfactant-polymer flooding technology is widely employed to extract crude oil to enhance its production. The bacterial strain Rhodococcus erythropolis SY095 has shown high degradation activity of alkane of crude oil. In the past, many treatment strategies have been implemented to reduce oil concentration in wastewater. Previous studies mainly focused on the extracellular products of Erythrococcus rather than its degradation properties. In the current study, we designed an immobilization method to modify the surface of R. erythropolis SY095 with functional Fe 3 O 4 nanoparticles (NPs) for biodegradation of crude oil and separation of the immobilized bacteria after degradation. We characterize the synthesized NPs through various methods, including scanning electron microscope energy-dispersive spectrometer, Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and a vibrating sample magnetometer. We found that the size of the synthesized NPs was approximately 100 nm. Our results showed that R. erythropolis SY095 was successfully coated with functional magnetic NPs (MNPs) that could be easily separated from the solution via the application of an external magnetic field. The coated cells had a high tolerance for heavy metals. Our findings demonstrated that the immobilization of MNPs to bacterial surfaces is a promising approach for the degradation of crude oil.

Funder

Tianjin Science and Technology Planning Project

National Key Research and Development Program of China

Basic Research Fund of The Central Public Welfare Scientific Research Institutions

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3