Flying through gaps: how does a bird deal with the problem and what costs are there?

Author:

Henningsson Per1ORCID

Affiliation:

1. Department of Biology, Lund University, Ecology Building, Sölvegatan 35, 223 62 Lund, Sweden

Abstract

Animals flying in the wild often show remarkable abilities to negotiate obstacles and narrow openings in complex environments. Impressive as these abilities are, this must result in costs in terms of impaired flight performance. In this study, I used a budgerigar as a model for studying these costs. The bird was filmed in stereo when flying through a wide range of gap widths from well above wingspan down to a mere 1/4 of wingspan. Three-dimensional flight trajectories were acquired and speed, wingbeat frequency and accelerations/decelerations were calculated. The bird used two different wing postures to get through the gaps and could use very small safety margins (down to 6 mm on either side) but preferred to use larger when gap width allowed. When gaps were smaller than wingspan, flight speed was reduced with reducing gap width down to half for the smallest and wingbeat frequency was increased. I conclude that flying through gaps potentially comes with multiple types of cost to a bird of which the main may be: (i) reduced flight speed increases the flight duration and hence the energy consumption to get from point A to B , (ii) the underlying U-shaped speed to power relationship means further cost from reduced flight speed, and associated with it (iii) elevated wingbeat frequency includes a third direct cost.

Funder

Vetenskapsrådet

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crash 2 Squash: An Autonomous Drone for the Traversal of Narrow Passageways;Advanced Intelligent Systems;2022-09-23

2. Birds both avoid and control collisions by harnessing visually guided force vectoring;Journal of The Royal Society Interface;2022-06

3. Budgerigars (Melopsittacus undulatus) perceive the Müller-Lyer illusion.;Journal of Experimental Psychology: Animal Learning and Cognition;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3