Abstract
A method for regularizing spectral determinants is developed which facilitates their computation from a finite number of eigenvalues. This is used to calculate the determinant ∆ for the hyperbola billiard over a range which includes 46 quantum energy levels. The result is compared with semiclassical periodic orbit evaluations of ∆ using the Dirichlet series, Euler product, and a Riemann-Siegel-type formula. It is found that the Riemann-Siegel-type expansion, which uses the least number of orbits, gives the closest approximation. This provides explicit numerical support for recent conjectures concerning the analytic properties of semiclassical formulae, and in particular for the existence of resummation relations connecting long and short pseudo-orbits.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献