Abstract
Recent results of theoretical and practical importance prove that the two-dimensional (in-plane) effective (average) Young’s modulus for an isotropic elastic material containing voids is independent of the Poisson’s ratio of the matrix material. This result is true regardless of the shape and morphology of the voids so long as isotropy is maintained. The present work uses this proof to obtain explicit analytical forms for the effective Young’s modulus property, forms which simplify greatly because of this characteristic. In some cases, the optimal morphology for the voids can be identified, giving the shapes of the voids, at fixed volume, that maximize the effective Young’s modulus in the two-dimensional situation. Recognizing that two-dimensional isotropy is a subset of three-dimensional transversely isotropic media, it is shown in this more general case that three of the five properties are independent of Poisson’s ratio, leaving only two that depend upon it. For three-dimensionally isotropic composite media containing voids, it is shown that a somewhat comparable situation exists whereby the three-dimensional Young’s modulus is insensitive to variations in Poisson’s ratio,
v
m
, over the range 0 ≤
v
m
≤ ½, although the same is not true for negative values of
v
m
. This further extends the practical usefulness of the two-dimensional result to three-dimensional conditions for realistic values of
v
m
.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献