Effective properties of composite materials containing voids

Author:

Abstract

Recent results of theoretical and practical importance prove that the two-dimensional (in-plane) effective (average) Young’s modulus for an isotropic elastic material containing voids is independent of the Poisson’s ratio of the matrix material. This result is true regardless of the shape and morphology of the voids so long as isotropy is maintained. The present work uses this proof to obtain explicit analytical forms for the effective Young’s modulus property, forms which simplify greatly because of this characteristic. In some cases, the optimal morphology for the voids can be identified, giving the shapes of the voids, at fixed volume, that maximize the effective Young’s modulus in the two-dimensional situation. Recognizing that two-dimensional isotropy is a subset of three-dimensional transversely isotropic media, it is shown in this more general case that three of the five properties are independent of Poisson’s ratio, leaving only two that depend upon it. For three-dimensionally isotropic composite media containing voids, it is shown that a somewhat comparable situation exists whereby the three-dimensional Young’s modulus is insensitive to variations in Poisson’s ratio, v m , over the range 0 ≤ v m ≤ ½, although the same is not true for negative values of v m . This further extends the practical usefulness of the two-dimensional result to three-dimensional conditions for realistic values of v m .

Publisher

The Royal Society

Subject

General Medicine

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3