The Riemann-Siegel expansion for the zeta function: high orders and remainders

Author:

Abstract

On the critical line s ═ ½ + i t ( t real), Riemann’s zeta function can be calculated with high accuracy by the Riemann-Siegel expansion. This is derived here by elementary formal manipulations of the Dirichlet series. It is shown that the expansion is divergent, with the high orders r having the familiar 'factorial' divided by power' dependence, decorated with an unfamiliar slowly varying multiplier function which is calculated explicitly. Terms of the series decrease until rr * ≈ 2π t and then increase. The form of the remainder when the expansion is truncated near r * is determined; it is of order exp(-π t ), indicating that the critical line is a Stokes line for the Riemann-Siegel expansion. These conclusions are supported by computations of the first 50 coefficients in the expansion, and of the remainders as a function of truncation for several values of t .

Publisher

The Royal Society

Subject

General Medicine

Reference19 articles.

1. n t )found in §4.

2. Berry M. V. 1986 In Quantum chaos and statistical nuclear physics (ed. T. H. Seligman &; H. Nishioka) pp. 1-17. Springer Lecture Notes in Physics No. 263.

3. Uniform asymptotic smoothing of Stokes’s discontinuities

4. Infinitely many Stokes smoothings in the gamma function

5. Hyperasymptotics for integrals with saddles

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BC-system, absolute cyclotomy and the quantized calculus;EMS Surveys in Mathematical Sciences;2023-10-24

2. Spectral triples and $\zeta$-cycles;L’Enseignement Mathématique;2023-06-08

3. A generalization of the Riemann–Siegel formula;Mathematische Zeitschrift;2022-12-13

4. On the Asymptotics to all Orders of the Riemann Zeta Function and of a Two-Parameter Generalization of the Riemann Zeta Function;Memoirs of the American Mathematical Society;2022-01

5. Randomness of Möbius coefficients and Brownian motion: growth of the Mertens function and the Riemann hypothesis;Journal of Statistical Mechanics: Theory and Experiment;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3