Structural and acoustic noise produced by turbulent flow over an elastic trailing edge

Author:

Abstract

An analysis is made of the sound and vibration produced by turbulent flow at low Mach number over the trailing edge of an elastic plate. The trailing edges of airfoils and other flow control surfaces are known to be important sources of high frequency sound. When the surface is compliant the turbulent edge-flow also excites structural modes of vibration. In conditions of heavy fluid loading, which typically occurs in underwater applications, the energy imparted to the structural motions can be large, and the subsequent scattering of ‘surface waves’ at mechanical discontinuities is frequently an important secondary source of sound. In this paper general formulae are developed for the structural and acoustic edge-noise when the control surface is modelled by a semi-infinite, thin elastic plate which can support bending waves. Numerical results are given for steel plates in air and in water. In the latter case it is shown that, when the frequency is smaller than the coincidence frequency the bending wave power exceeds the total sound power generated at the edge by 20–40 dB, independently of the mean flow velocity, so that sound generated by secondary scattering may then be the dominant source of acoustic radiation.

Publisher

The Royal Society

Subject

General Medicine

Reference39 articles.

1. Abramowitz M. & Stegun I. A. (eds) 1970 Handbook of mathematical functions 9th edn. Nat. Bur. Stands. Appl. Math. Ser. No. 55. U.S. Department of Commerce.

2. Acoustic radiation from an airfoil in a turbulent stream

3. Noise due to turbulent flow past a trailing edge

4. Airfoil gust response and the sound produced by airfoil-vortex interaction

5. Gust response for flat-plate airfoils and the Kutta condition

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3