A model of sonoluminescence

Author:

Abstract

A bubble of air, trapped at the centre of a spherical container of water on the surface of which spherical sound waves are maintained by transducers, may emit light, a phenomenon known as sonoluminescence. The surface of the bubble expands and contracts in obedience to the Rayleigh–Lamb equation, which requires knowledge of the gas pressure on the surface of the bubble. In many investigations of bubble pulsations, it is assumed that the air in the bubble moves adiabatically. To understand sonoluminescence, however, it is necessary to allow for the possibility that shocks are generated within the bubble. We couple the Rayleigh–Lamb equation governing the bubble radius to Euler’s equations governing the motion of air in the bubble, and solve the two equations simultaneously. The air is modelled by a van der Waals gas. Results are presented for a number of slightly different conditions of excitation, but in which the response of the system is widely different. If the frequency of the sound is high, the gas in the bubble moves adiabatically and no light is emitted. As the frequency is reduced (for the same ambient bubble radius and driving pressure), the incoming bubble surface acts as a piston that generates an ingoing shock wave that passes through the centre of the bubble, and then, when it strikes the bubble surface, halts and reverses its inward motion; a sequence of such inwardly and outwardly moving shocks occur. The shock waves generate such high temperatures that the air near the centre of the bubble is almost completely ionized, and emits light, which we attribute to bremmstrahlung. The light created by the second inwardly moving shock exceeds that created by the first but, as the frequency of the sound is further reduced, the energy from the first shock rises, and the overall luminosity of the bubble increases. When the sound frequency is further reduced, two shocks are launched successively by the inward moving bubble surface, the second colliding with the first after it has passed through the centre of symmetry but before it can collide with the bubble surface. Even higher temperatures are reached and the luminosity of the bubble continues to increase with decreasing frequency. Details of these solutions are presented, and estimates are made of the luminosity of the bubble in different conditions of excitation. Two other families of solutions are presented. In one, the frequency and ambient bubble radius are fixed and the driving amplitude is varied. In the other, the frequency and driving amplitude are fixed and the radius is varied. The effects of changing only the molecular weight of the trapped gas is also examined.

Publisher

The Royal Society

Subject

General Medicine

Reference23 articles.

1. Observation of synchronous picosecond sonoluminescence

2. Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble

3. Sensitivity of sonoluminescence to experimental parameters

4. Besant W. H. 1859 Treatise on hydrostatics and hydrodynamics. Cambridge: Deighton Bell & Co.

5. Camb;Challis J.;Phil. Trans.,1830

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3