Ignition of flammable atmospheres by radiation-heated fibrous agglomerates

Author:

Abstract

The conditions under which laser irradiation of loose agglomerates of fine fibres or particles leads to the ignition of a surrounding flammable gas mixture are studied in relation to the hazard associated with the use of optical sensing in explosive atmospheres. Results for stoichiometric mixtures in air of a range of hydrocarbons as well as of diethyl ether, carbon disulphide and hydrogen, are presented in the form of minimum igniting radiation flux as a function of the time to ignition. The minimum igniting fluxes at long induction times prove to be surprisingly low, down to 22 kW m –2 for carbon disulphide/air mixtures. Traverses with small thermocouples, along with equilibrium temperature measurements during irradiation in air and cooling curves obtained following switch off, show that the system acts as a two-dimensional slab, though its heat transfer properties differ somewhat from bodies with well-defined boundaries. Irradiation with lasers of widely differing wavelengths and the use of different target surface coatings leads to widely varying equilibrium temperatures. While the minimum igniting flux cannot be correlated simply with any of the obvious ignition criteria, the corresponding equilibrium temperature reached in an inert atmosphere points to a critical ignition temperature for each particular flammable mixture. This is used to propose a tentative hazard assessment based on the concept of black body radiation interacting with a ‘black ’ particle which, although not the worst case for monochromatic radiation, proves to be more hazardous than the worst case yet encountered in practice. The variation of ignition lag with radiant power flux is such that the total energy flux varies linearly with time; effective activation energies for various fuels are deduced from the variation of induction time with temperature. A simplified theoretical model is proposed, based on classical thermal explosion theory and the large activation energy idealization. It is shown that the radiant power flux is the sole ignition criterion so long as the irradiated area is large by comparison with the quenching dimensions of the mixture. Measurements on smaller beam diameters carried out by refocusing the beam emerging from an optical fibre indicate that, below these dimensions, minimum igniting power fluxes rise, while hazardous laser powers fall to values of the order of 100 mW.

Publisher

The Royal Society

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3