The characterization of volatile molecular substances

Author:

Abstract

Diffusion for gaseous sources comprising more than one type of substance is examined to show how relative concentrations change with time and distance. The large variations which are predicted make nonsense of the popular assumption that odour or smell is an intrinsic property of the source material. However, some characterization of volatile chemical substances is needed. It is shown that this is possible by creating a uniform and stable atmosphere after the relapse of sufficient time by introducing the gas mixture into an enclosed space. In this investigation the situation is analysed for a spherical enclosure using Fourier analysis techniques for the long timescale behaviour and the Laplace transform for the short timescale solution. The measurement of odours via the response of sensor arrays within a spherical enclosure is considered and a proposal is made for utilizing such an enclosure in a definition of volatile molecular substances (analogous to biological ‘smell’). The conditions for optimum compatibility between an array of sensors and a set of calibrands are discussed and the practical means of effecting such measurements are considered in relation to known types of sensor. It is concluded that the quality of volatile molecular substances is definable and measurable down to very low gas concentrations in air: probably below 10 parts per billion for a wide range of gas mixtures unconstrained by such limitations associated with a biological nose such as toxicity, temperature and subjective evaluation.

Publisher

The Royal Society

Subject

General Medicine

Reference17 articles.

1. Conducting polymer gas sensors. Sensors & Actuators. Conducting polymer gas sensors;Bartlett P. N.;Part I. Fabric. Character.,1989

2. Carslaw H. S. & Jaeger J. C. 1959 Conduction of heat in solids. Oxford: Clarendon.

3. Corcoran P. Shurmer H. V. & Gardner J. W. 1993 Integrated tin oxide sensors of low drift and low power consumptions for use in gas or odour sensing. Sensors Actuators (In the press.)

4. Crank J. 1975 The mathematics of diffusion. Oxford: Clarendon.

5. Detection of vapours and odours from a multisensor array using pattern recognition Part 1. Principal component and cluster analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3