Real space manifestation of the first sharp diffraction peak in the structure factor of liquid and glassy materials

Author:

Abstract

The problem of those discernible features of the intermediate range order (IRO) which can be attributed to the first sharp diffraction peak (FSDP) observed in the structure factor of many liquid and glassy materials is approached by treating this peak as a distinct feature. It is found, by considering the measured partial structure factors, S αβ ( k ), for molten ZnCl 2 , GeSe 2 , MgCl 2 , NiBr 2 and Nil 2 and the measured total structure factors, F ( k ), for glassy SiO 2 , PS 4 and liquid CCl 4 , that the propensity of the FSDP to have a prominent effect on the underlying features of the IRO depends noticeably on the system type. Specifically, the FSDP confers a marked oscillatory character of periodicity 2π/ k 1 (where k 1 is the FSDP position) on the IRO when the local structural units, which give rise to the density fluctuations on the IRO scale, exist as stable entities for a timescale τ ≫ 5 × 10 -12 s. The FSDP therefore accounts for the discernible features of the underlying IRO for the viscous glass forming liquids ZnCl 2 and GeSe 2 , for the glasses SiO 2 and PS 4 , and for the molecular liquid CCl 4 . The influence of the FSDP on the IRO is less pronounced for molten MgCl 2 and is negligible for molten NiBr 2 and Nil 2 , both of which have a high cation mobility which leads to a relative instability of the Ni 2+ centred structural units. The effect on the FSDP of temperature and pressure are briefly considered as are the development of the FSDP in molten ZnX 2 (when X is changed from Cl to I to Br) and the minimum size of r -space model which is required if the FSDP is to be accurately predicted.

Publisher

The Royal Society

Subject

General Medicine

Reference51 articles.

1. Allen D. A. Howe R. A. Wood N. D.

2. Allen D. A. Sc Howe R. A. 1992

3. The structure of molten zinc chloride

4. Temperature dependence of the structures ofAs2Se3andAsxS1−xglasses near the glass transition

5. J.Phys. Condens. Matter 4 6029.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3