Precise deposition of molten microdrops: the physics of digital microfabrication

Author:

Abstract

Objects, materials or components may be built up by precise deposition of molten microdrops under controlled thermal conditions. This provides a means of ‘digital microfabrication’, or fabrication of 3D objects microdrop by microdrop under complete computer control much in the same way as 2D hard copy is obtained by ink-jet printing. In this paper we present a study of some basic modes of precise deposition and solidification of molten microdrops. The conditions required for controlled deposition are discussed, and experimental results and theoretical analyses are given for various basic deposition modes. These include columnar (i. e. drop-on-drop) deposition at both low and high frequencies, sweep deposition of continuous beads on flat surfaces, and repeated sweep deposition for buildup of larger objects or materials. The theory provides a means for generalizing our particular experimental results, which were obtained with hard waxes, to other melts. An important parameter in the theory is the solidification angle, that is, the apparent contact angle of the solidified melt. Our study indicates that in microscale deposition this angle appears under some conditions to be a property of the melt material, the target material and the characteristic temperatures involved, independent of the spreading dynamics.

Publisher

The Royal Society

Subject

General Medicine

Reference8 articles.

1. Bird R. B. Stewart W. E. & Lightfoot E. N. 1960 Transport phenomena. New York: Wiley.

2. Chandrasekhar S. 1981 Hydrodynamic and hydromagnetic stability ch. 12. New York: Dover.

3. Freezing a saturated liquid inside a sphere

4. On the problem of heat conduction in a semi-infinite radiating wire. appl;Lowan A. N.;Math.,1945

5. Calorimetric Analysis of Commercial and Dental Waxes

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3