On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

Author:

Abstract

There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. Here we consider the interaction of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, we exam in the interaction between lower-branch Tollmien-Schlichting (TS) waves and the upper-branch, stationary, inviscid crossflow vortex, whose asymptotic structure has been described. This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and we show (for the cases of both a stationary vortex with a viscous-type (linear) critical layer structure and one with a nonlinear critical layer) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, we examine the problem with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, travelling waves.

Publisher

The Royal Society

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3