Abstract
We derive necessary and sufficient conditions that a second-order co-variant differential operator be a symmetry operator of Maxwell’s equations in a general curved space-time background. It is found that such operators are naturally formulated in terms of conformal Killing vectors, tensors and spinors. Operators of this type play a role in the solution of Maxwell’s equations via separation of variables in the Kerr background space-time.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献