The continuum mechanics of coherent two-phase elastic solids with mass transport

Author:

Abstract

We develop a theory for the dynamics of an interface in a two-phase elastic solid with kinetics driven by mass transport and stress. We consider a two-phase system consisting of bulk regions separated by a sharp interface endowed with energy and capable of supporting force. Our discussion is based on balance laws for mass and force in conjunction with a version of the second law - appropriate to a mechanical system out of equilibrium - which we use to develop a suitable constitutive theory for the interface. It is assumed that mass transport is characterized by the bulk diffusion of a single independent species; we neglect mass diffusion within the interface; limit our discussion to a continuous chemical potential and to a coherent interface; neglect the elasticity of the interface; and consider only infinitesimal deformations, neglecting inertia. We show that the field equations and free-boundary conditions can be developed in a simple manner in terms of the diffusion potential and its time derivatives, as opposed to the usual formulation in terms of concentration. Natural consequences of the thermodynamic framework are Lyapunov functions for the resulting evolution problems. This leads to a hierarchy of variational principles that should describe the equilibrium shapes of misfitting particles as well as possible microstructures that might form; these principles are applicable both in the absence and presence of an applied stress.

Publisher

The Royal Society

Subject

General Medicine

Reference25 articles.

1. Abinandanan T. A. 1991 Coarsening of elastically interacting particles Ph.D. thesis Carnegie Mellon University U.S.A.

2. Alexander J. I. D. & Johnson W. C. 1985 Thermomechanical equilibrium of solid-fluid systems with curved interfaces. J.

3. Bedeaux D. Albano A. M. & Mazur P. thermodynamics. Physica A 82 438-462. appl.Phys. 56 861-824.

4. 1976 Boundary conditions and non-equilibrium

5. On spinodal decomposition. Acta metall;Cahn J. W.;Mater.,1961

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3