Shear band development in polycrystals

Author:

Abstract

Shear band localizations are studied using a band model involving two polycrystalline aggregates; one representing the material inside the potential band and the other the material outside. Each of these aggregates is assumed to be homogeneously deformed and conditions of compatibility and equilibrium are enforced across the band interfaces. The aggregate constitutive response is obtained from a generalized Taylor polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation, so that no ambiguity arises concerning the choice of active slip systems. Because of the material rate sensitivity a shear band bifurcation is ruled out at achievable strain levels, but localization occurs from the growth of an initial inhomogeneity. Results are presented for imposed loading histories of plane strain tension, biaxial tension and simple shear, both for an initially isotropic aggregate and for an aggregate that has undergone a pre-strain in plane strain compression. Depending on the material properties, the initial conditions and the imposed deformation state, either (i) localization, in the sense of a very high strain rate concentration in the band, takes place; or (ii) the band strain rate increases rapidly for a short interval and then saturates; or (iii) the initial inhomogeneity does not induce a large strain rate concentration in the band. The initial pre-strain promotes earlier localization in plane strain tension and in simple shear. In biaxial tension, localization occurs earlier for the pre-strained material if the initial imperfection is large, but tends to saturate for smaller imperfections. The effects of variations in imperfection amplitude and material strain rate sensitivity are illustrated.

Publisher

The Royal Society

Subject

General Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localization in a plastically anisotropic void-sheet;Engineering Fracture Mechanics;2023-06

2. Plastic flow localization resulting from yield surface vertices: crystal plasticity and corner theories of plasticity;International Journal of Material Forming;2022-04-27

3. 3D study of plastic flow localization at a void-sheet;International Journal of Mechanical Sciences;2020-05

4. Modelling strain localization in Ti–6Al–4V at high loading rate: a phenomenological approach;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2019-11-25

5. Numerical simulations of adiabatic shear localization in textured FCC metal based on crystal plasticity finite element method;Materials Science and Engineering: A;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3