Abstract
It is shown that there exists a category of two-dimensional diffraction problems, which can be put into a ‘standard form‘ of dual integral equations. These diffraction problems include: diffraction of electromagnetic waves by a finite strip, a finite slit, the diffraction of scalar or vector elastic waves by a rigid strip or crack, etc. A general method for solving such dual integral equations is given by the artifice of constructing a set of functions of compact support biorthogonal to another given set of functions. The sufficient conditions for a given dual integral equations to be solvable in this manner are also determined. Hence, the method forms a complement to the Weiner-Hopf method. To illustrate the method solutions are obtained for a bench-mark problem : the diffraction of light by a finite perfectly conducting strip (or equivalently the diffraction of SH waves by a crack). Comparison with results obtained by others for low, intermediate and high frequencies show the utility and accuracy of the method for the entire range of frequencies. Both the near field and the far field are obtained, the latter is shown to correspond to the Fraunhoffer diffraction pattern for high frequency. It is also shown that for the equivalent crack problem the stress intensity factor (SIF) fluctuates rapidly with changes in the angle of incidence for high frequencies, thus making the SIF especially sensitive to angle of incidence at high frequencies.
Reference50 articles.
1. Abramowitz M. & Stegun I. 1968 Handbook of mathematical functions. New York: Dover.
2. Achenbach J. D. 1975 Wave'propagation in elastic solids. New York: North-Holland Elsevier.
3. Proc;Anderson R. S.;R. Soc. Edinb. A,1982
4. DIFFRACTION OF SCALAR ELASTIC WAVES BY A CLAMPED FINITE STRIP
5. Beltrami E. 1881 R. Accad. Scid. Bologne p. 461.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献