Stokes’s phenomenon for superfactorial asymptotic series

Author:

Abstract

Superfactorial series depending on a parameter are those whose terms a ( n, z ) grow faster than any power of n !. If the terms get smaller before they increase, the function F ( z ) represented by Ʃ 0 a ( n, z ) will exhibit a Stokes phenomenon similar to that occurring in asymptotic series whose divergence is merely factorial: across ‘Stokes lines’ in the Z plane, where the late terms all have the same phase, a small exponential switches on in the remainder when the series is truncated near its least term. The jump is smooth and described by an error function whose argument has a slightly more general form than in the factorial case. This result is obtained by a method which is heuristic but applies to superfactorial series where Borel summation fails. Several examples are given, including an analytical interpretation of the sum, and a numerical test of the error-function formula, for the function represented by F ( Z ) = Ʃ 0 exp { n 2 / A -2 nz }, where A ≫ 1.

Publisher

The Royal Society

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3