Diffusion of incremental loads in prestrained bars

Author:

Abstract

Axial diffusion of perturbed fields generated by concentrated traction rates applied to the surface of a prestrained bar are examined within the framework of finite strain theory. The analysis centres on a plane-strain compatibility equation for a stress rate potential. This formulation covers a broad class of elastic and elastoplastic solids at large strains. A family of elemental rate boundary-value problems for concentrated incremental loads are solved exactly in terms of Fourier integrals. This is done in the spirit of earlier studies by Filon and von Kármán for linear elastic materials. Numerical examples for the Blatz–Ko constitutive relation reveal that the rate of axial diffusion has a strong sensitivity to the level of prestrain. Of special interest here is the surprising redistribution of the perturbed transversely symmetric stress rates for axial strains near necking. This behaviour is accompanied by considerable reduction in the rate of axial diffusion. A similar pattern is displayed by antisymmetric disturbances near the stress free configuration. These findings are supported by an asymptotic expansion based on the residue integration method. At a distance from the applied loads, axial diffusion is dominated by the exponential decay of the first self-equilibrating eigenfunction of the associated end problem for a semi-infinite strip.

Publisher

The Royal Society

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3