A geometrical approach to wave-type solutions of excitable reaction-diffusion systems

Author:

Abstract

We formulate the eikonal equation approximation for travelling waves in excitable reaction-diffusion systems, which have been proposed as models for a large number of biomedical situations. This formulation is particularly suited, in a natural way, to numerical solution by finite difference methods. We show how this solution is independent of the parametric variable used for expressing the eikonal equation, and how a reduction of dimensionality implies a major saving over the time taken to solve the original reaction-diffusion system. Neumann boundary conditions on reactants in the original system translate into a geometric constraint on the wave boundary itself. We show how this leads to geometrically stable stationary wave boundaries in appropriately shaped non-convex domains. This analytical prediction is verified by numerical solution of the eikonal equation on a domain which supports geometrically stable stationary wave boundary configurations. We show how the concepts of geometrical stability and wave-front stability relate to a problem where a bi-stable reaction-diffusion system has a stable stationary wave-front configuration.

Publisher

The Royal Society

Subject

General Medicine

Reference21 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3