Convective variational approach to relativistic thermodynamics of dissipative fluids

Author:

Abstract

Using guidelines provided by Noether identities arising from a generalized variation procedure of convective type, a new (nonlinear and exactly self-consistent) category of relativistic thermodynamic models is developed for the systematic representation of viscous conducting fluid media (allowing for several independent charged or neutral chemical constituents). Apart from the provision of a set of dissipation coefficients of the usual (reactivity, resistivity, and viscosity) type, the specification of a particular model is determined just by giving the algebraic dependence a single ‘master function’, ͘ Λ say, on the relevant dynamical variables, which are supposed here to consist of an entropy current 4-vector and a set of particle current 4-vectors corresponding to the various chemical constituents, together with a set of symmetric (rank 3) viscosity tensors, which are considered as being dynamically independent of the corresponding current vectors except in the degenerate limit of linear viscosity. The master function is set up as a generalization of an ordinary lagrangian function, to which it reduces in the relevant non - dissipative limit, and, as in the conservative case, it is used for the construction of derived quantities in such a way that appropriate self-consistency conditions are satisfied as identities. In particular the relevant stress-momentum-energy tensor is obtained directly in terms of the independent variables and of their dynamical conjugates (whose role is hidden in the traditional approach as developed by Israel & Stewart), which are set of ordinary 4-momentum (not 4-momentum density) covectors associated with the independent currents, and a set of generalised Cauchy type strain (not strain - rate) tensors associated with the independent viscous stress contributions. The range of application of the category obtained in this way is intended to include that of the standard (Israel-Stewart) formalism to which it is expected to be effectively equivalent in the limit of sufficiently small deviations from thermodynamic equilibrium.

Publisher

The Royal Society

Subject

General Medicine

Reference15 articles.

1. Carter B. 1976 In Universite Libre de Bruxelles. Journeesrelativistes (ed. M. Cahen R. Debever & J. Geheniau) pp. 12-27.

2. Rheometric structure theory, convective differentiation and continuum electrodynamics

3. Carter B. 1983 In A random walk in relativity and cosmology (ed. N. Dadhich J. Krisna Rao J. V Narlikar & C. V. Vishveshwara) pp. 48-62. Bombay: Wiley Eastern.

4. Carter B. 1989 Covariant theory of conductivity in ideal fluid or solid media. In Relativistic fluid dynamics (ed. A. Anile & Y. Choquet-Bruhat) pp. 1-64. Lecture Notes in Mathematics 1385. Springer-Verlag.

5. Foundations of general relativistic high-pressure elasticity theory

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3