Velocity and size characteristics of liquid-fuelled flames stabilized by a swirl burner

Author:

Abstract

Velocity and droplet size characteristics of an unconfined quarl burner, of 16 mm quarl inlet diameter, have been measured with a phase-Doppler anemometer at a swirl number of about 0.29: the Reynolds number of the flow was 30000, based on the cold bulk velocity of 30.4 m s -1 and the hydraulic diameter. The atomization was achieved by shear between the swirling air and six radial kerosene jets and the resulting Sauter and arithmetic mean diameters were about 70 and 50 μm respectively after injection: velocity characteristics are presented for three 5 μm-wide size classes, 10, 30 and 60 μm. The flows correspond to no combustion and combustion of natural gas with a heat release of 8 kW supplemented by liquid kerosene flow rates sufficient to generate 21.6 and 37.2 kW : the gas equivalence ratio was 0.45 and atomized kerosene at two flow rates increased the overall ratios to 1.64 and 2.53. In non­-reacting flow, droplets 30 μm and smaller are sufficiently small to be entrained by the mean air velocity towards the central part of the flow and into the swirl-induced recirculating air bubble. The 60 μm droplets are able to travel through the bubble uninfluenced by turbulent fluctuations in the air and are ‘centrifuged’ away from the centreline, through acquisition of a mean swirl velocity component, so that a large proportion of the kerosene volume flow rate lies at the edge of the swirling jet. Because larger droplets are centrifuged to the outer part of the flow, whereas the smaller are entrained towards the centreline, the Sauter and arithmetic mean diameters are, by 1.22 quarl exit diameters downstream of the quarl, approximately 65 and 36 μm at the outer part of the flow and 35 and 12 μm near the centreline in the inert flow. In reacting flow, droplets evaporate rapidly in regions of elevated temperatures and hence no droplets are found within the flame brush and recirculation region. The aerodynamic response of each size class to the air velocity is similar to inert flow so that the majority of the kerosene flow is centrifuged away from the flame. On exit from the quarl, the evaporation and burning rates cause the Sauter and arithmetic mean diameters to be about 70 and 50 μm and 60 and 30 μm at the inner and outer edges of the spray respectively. By 1.22 quarl exit-diameters from the exit of the quarl, the air motion entrains droplets smaller than about 30 μm towards the flame, at the inner edge of the spray, so that the Sauter and arithmetic mean diameters are 60 and 40 μm at the outer edge of the jet. There is comparatively little effect of changing the flow rate of kerosene because the combustion is controlled by the low available number of smaller droplets, although the Group combustion number corresponds to ‘cloud’ burning. The relative response of droplets to the mean and turbulent components of air motion, including the ‘centrifuging’ effect, can be scaled to other flows through dimensionless numbers defined in the text.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference35 articles.

1. Adler U. (ed.) 1986 Automotive handbook (2nd edn). Stuttgart: Robert Bosch.

2. Arcoumanis C. Hadjiapostolou A. & Whitelaw J. H. 1987 Swirl centre precession in engine flows. S.A.E. Trans. 96.

3. Bachalo W. D. Houser M. J. & Smith J. N. 1986 Evolutionary behavior of sprays produced by pressure atomizers. AIAA paper 86-0296.

4. Bauckhage K. Dannehl M. Fritsching U. Schoene F. & Schulte G. 1987 Phase Doppler measurements of drop size and velocity in the spray cone of a pressure nozzle and a pneumatic atomizer. In 2nd Int. Conf. Laser anemometry - advances and applications (21-23 September 1987 Strathclyde U.K.) pp. 325-334. Cranfield: British Hydraulic Research Association.

5. Group Combustion of Liquid Droplets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3