On the instability of flow in a streamwise corner

Author:

Abstract

The linear stability of an incompressible laminar flow in the blending boundary layer between the boundary layer in a 90° streamwise corner and a Blasius boundary layer well away from the corner is examined using a locally parallel flow approximation. It is shown that the magnitude of the cross flow in the boundary layer is too small to be a significant factor in the observed early transition in the blending layer. However, the influence of the outer boundary conditions associated with oblique modes of disturbances which are anti-symmetric about the bisector plane are shown to have a profound effect on the stability of the flow. As a result, the square root of the critical streamwise Reynolds number R er , associated with a spanwise location is significantly reduced as the corner is approached, being R er = 54 approximately for spanwise distance of z * = 6 x * R -1 from the corner compared with R er = 322 approximately for z * = 20 x * R -1 , where x * measures downstream distance from the leading edges and R 2 is the streamwise Reynolds number. At R = 600, the growth rate of the most amplified mode of disturbance at the former location is over six times greater than that at the latter; the corresponding wave angle at the two locations is respectively 44° and 5°, approximately.

Publisher

The Royal Society

Subject

General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of research on streamwise corner boundary layer;Physics of Fluids;2023-08-01

2. Natural transition of the supersonic streamwise corner flow;Applied Physics Letters;2023-03-20

3. Influence of acoustic resonance on mixing enhancement in confined mixing layers;Chemical Engineering and Processing: Process Intensification;2017-01

4. Optimal wavepackets in streamwise corner flow;Journal of Fluid Mechanics;2015-02-04

5. Viscid–inviscid pseudo-resonance in streamwise corner flow;Journal of Fluid Mechanics;2014-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3