One-dimensional shock waves in simple materials with memory

Author:

Abstract

Asymptotic evolution laws for plane dilatational shock waves travelling in simple materials with memory are derived in this paper by using two approximation methods. The first method is a combination of singular surface theory and perturbation methods. A system of two coupled first-order ordinary differential equations is derived for the shock amplitude and the amplitude of the accompanying second-order discontinuity. The shock amplitude is assumed to be small, but the accompanying second-order discontinuity may be taken either to be finite or to be small with the shock amplitude. The first case corresponds to the situation in which the duration time of the applied load is small compared with the viscous relaxation time and we show that the evolutionary behaviour of the two discontinuities is strongly affected by material nonlinearity. The second case, however, corresponds to the situation in which the duration time is comparable with the viscous relaxation time and we are able to show that the evolutionary behaviour is as predicted by the linear theory of viscoelasticity. In both cases the corresponding elastic results are obtained on allowing the viscous relaxation time to tend to infinity. The second approximation method is the shock-fitting method applied to a modulated simple wave theory, which is itself an approximation based on a small-amplitude finite-rate assumption equivalent to the first case discussed above. The two approximation methods are shown to yield the same evolution laws within their common range of validity.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of Yibin Fu’s work: In recognition of his 60th birthday;International Journal of Solids and Structures;2024-07

2. Discontinuity waves in temperature and diffusion models;Mechanics Research Communications;2024-05

3. Singular travelling waves in soft viscoelastic solids of rate type;European Journal of Mechanics - A/Solids;2024-01

4. On kinematics of one‐dimensional radially symmetric shocks in non‐ideal reacting gases;Mathematical Methods in the Applied Sciences;2023-07-04

5. Acoustic black hole in a hyperelastic rod;Zeitschrift für angewandte Mathematik und Physik;2023-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3