Abstract
In regular heterogeneous catalytic reactions, evaluation of the adsorption behaviour of the ephemeral intermediates that participate kinetically in the main reaction pathway is often inaccessible experimentally. In electrocatalysis, on the other hand, electrochemical transient methods can provide such information. In the present paper, potential-relaxation transients are used to derive information on the electroactive, kinetically significant adsorbed intermediate states that are involved in the anodic O
2
evolution reaction (OER) at Pt electrodes. By means of such transients, digitally recorded over 5–6 decades of time from microseconds to seconds, the adsorption capacitance of the intermediate states in the reaction is evaluated as a function of potential over a range corresponding to appreciable current densities for O
2
evolution. Anodic O
2
evolution takes place at Pt, as at all other metal anodes, on an oxide film. A well-defined state of such a film must be established by a pre-conditioning programme to make meaningful and reproducible kinetic studies on the OER. The state of the oxide film is conveniently characterized by means of cyclic-voltammetry. The intermediate surface states in the reaction can be two or more oxidation states of Pt atoms in the oxide and OH or O species at the oxide’s surface. Two distinct types of adsorption behaviour are distinguished for potentials above and below
ca
. 1.85 V against the reversible H
2
electrode (RHE), and are related to the observed kinetics of the OER.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献