Contribution of direct numerical simulation to understanding and modelling turbulent transport

Author:

Abstract

With the advances in large scale computers, reliable numerical methods and efficient post-processing environment, direct numerical simulation (DNS) has become a valuable and indispensable resource for fundamental turbulence research, although DNS is possible only when the turbulent Reynolds (or Peclet) number remains small to moderate. This paper reviews the contribution that various DNSS have made to understanding and modelling turbulent transport phenomena. After general remarks are made on the grid requirements and numerical methods of DNS, its novelties as a numerical experiment are summarized and some of them are demonstrated by introducing typical DNS results at the University of Tokyo. Emphasis is laid upon new findings on the turbulence statistics, their budgets and quasi-coherent eddy structures revealed by the simulations of the fully developed channel flow with heat transport at different Prandtl numbers, and also a recent modelling attempt to take into account the new knowledge extracted from these DNSS, i. e. a remarkable change of the destruction mechanism of turbulent scalar flux with the Prandtl number and a low Reynolds number effect on the redistribution process of the Reynolds stress.

Publisher

The Royal Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3