Harmonic and musical wavelets

Author:

Abstract

The concept of a harmonic wavelet is generalized to describe a family of mixed wavelets with the structure w m, n (x) = {exp (i nx ) – exp (i mx )}/i( n – m ) 2π x . It is shown that this family provides a complete set of orthogonal basis functions for signal analysis. By choosing the (real) numbers m and n (not necessarily integers) appropriately, wavelets whose frequency content ascends according to the musical scale can be generated. These musical wavelets provide greater frequency discrimination than is possible with harmonic wavelets whose frequency interval is always an octave. An example of the wavelet analysis of music illustrates possible applications.

Publisher

The Royal Society

Subject

General Medicine

Reference9 articles.

1. Jeans Sir James 1937 Science and music. Cambridge University Press.

2. A theory for multiresolution signal decomposition: the wavelet representation

3. Wavelet analysis of vibration. In Proc. Structural Dynamics and Vibration Symp., ASME Energy-Sources Technology Conference;Newland D. E.;Houston PD-vol.,1993

4. Harmonic wavelet analysis

5. Newland D. E. 1993c Random vibrations spectral and wavelet analysis 3rd edn. Harlow: Longman and New York: John Wiley.

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3