Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study

Author:

Morgan Benjamin J.ORCID

Abstract

Ionic transport in solid electrolytes can often be approximated as ions performing a sequence of hops between distinct lattice sites. If these hops are uncorrelated, quantitative relationships can be derived that connect microscopic hopping rates to macroscopic transport coefficients; i.e. tracer diffusion coefficients and ionic conductivities. In real materials, hops are uncorrelated only in the dilute limit. At non-dilute concentrations, the relationships between hopping frequency, diffusion coefficient and ionic conductivity deviate from the random walk case, with this deviation quantified by single-particle and collective correlation factors, f and f I , respectively. These factors vary between materials, and depend on the concentration of mobile particles, the nature of the interactions, and the host lattice geometry. Here, we study these correlation effects for the garnet lattice using lattice-gas Monte Carlo simulations. We find that, for non-interacting particles (volume exclusion only), single-particle correlation effects are more significant than for any previously studied three-dimensional lattice. This is attributed to the presence of two-coordinate lattice sites, which causes correlation effects intermediate between typical three-dimensional and one-dimensional lattices. Including nearest-neighbour repulsion and on-site energies produces more complex single-particle correlations and introduces collective correlations. We predict particularly strong correlation effects at x Li =3 (from site energies) and x Li =6 (from nearest-neighbour repulsion), where x Li =9 corresponds to a fully occupied lithium sublattice. Both effects are consequences of ordering of the mobile particles. Using these simulation data, we consider tuning the mobile-ion stoichiometry to maximize the ionic conductivity, and show that the ‘optimal’ composition is highly sensitive to the precise nature and strength of the microscopic interactions. Finally, we discuss the practical implications of these results in the context of lithium garnets and other solid electrolytes.

Funder

Royal Society

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3